UNIVERSITI TEKNOLOGI MARA ANSWER ASSESSMENT 1

COURSE	STATISTICS FOR BUSINESS AND SOCIAL
SCIENCES	
COURSE CODE	$:$ STA404
DATE OF EXAMINATION	$: 25$ NOVEMBER 2020
DURATION	$: 30$ MINUTES

QUESTION 1

a) T
b) F
c) F
d) T
e) T

QUESTION 2

a) mean $=252 / 15=16.8$, standard deviation $=\sqrt{ } 38.6=6.2129$
b)

(2 marks)
c) The shape of the distribution is skewed to the left.

QUESTION 3

a)
$99 \% C I=115.35 \pm Z_{\frac{0.01}{2}}\left(\frac{20.44}{\sqrt{35}}\right)$
$99 \% C I=115.35 \pm(2.58)\left(\frac{20.44}{\sqrt{35}}\right)$
$99 \% \mathrm{Cl}=115.35 \pm 8.914$
$99 \% C I=(106.436,124.264)$
b) We can conclude that the customers not spent more than RM110 because 110 is included in the interval.

QUESTION 4

a) $X=85.20-82.30=2.90$
$\mathbf{Y}=9$
(2 marks)
b) $95 \% \mathrm{Cl}=(1.199,4.601)$
c) There is enough evidence to conclude that their resting pulse rate has reduced after five weeks because 0 is not included in the interval

END OF QUESTIONS

APPENDIX 1

SAMPLE MEASUREMENTS

Mean	$\bar{x}=\frac{\sum x}{n}$
Standard deviation	$s=\sqrt{\frac{1}{n-1}\left[\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n}\right.}$ or
Coefficient of Variation	$s=\sqrt{\frac{1}{n-1}\left[\sum(x-\bar{x})^{2}\right]}$
Pearson's Measure of Skewness	$C V=\frac{s}{\bar{x}} \times 100 \%$
	Coefficient of Skewness $=$ $\frac{3(\text { mean }- \text { median })}{s \text { tan dard deviation }}$ OR $\frac{\text { mean }- \text { mod } e}{s \text { tan dard deviation }}$

CONFIDENCE INTERVAL

Parameter and description	A (1- α) 100% confidence interval
Mean μ, for large samples, σ^{2} unknown	$\bar{x} \pm z_{\alpha / 2} \frac{s}{\sqrt{n}}$
Mean μ, for small samples, σ^{2} unknown	$\overline{\mathrm{x}} \pm \mathrm{t}_{\alpha / 2} \frac{\mathrm{~s}}{\sqrt{\mathrm{n}}} \quad ; \quad \mathrm{df}=\mathrm{n}-1$
Difference in means of two normal distributions, $\mu_{1}-\mu_{2}$ $\sigma_{1}^{2}=\sigma_{2}^{2}$ and unknown	$\begin{gathered} \left(\bar{x}_{1}-\bar{x}_{2}\right) \pm t_{\alpha / 2} s_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}} \quad ; d f=n_{1}+n_{2}-2 \\ s_{p}=\sqrt{\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}} \end{gathered}$
Difference in means of two normal distributions, $\mu_{1}-\mu_{2}$, $\sigma_{1}^{2} \neq \sigma_{2}^{2}$ and unknown	$\begin{aligned} & \left(\bar{x}_{1}-\bar{x}_{2}\right) \pm t_{\alpha / 2} \sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}} ; \\ & d f=\frac{\left[s_{1}^{2} / n_{1}+s_{2}^{2} / n_{2}\right]^{2}}{\left(\frac{s_{1}^{2}}{n_{1}}\right)^{2}} \frac{\left(\frac{s_{2}^{2} / n_{2}}{n_{1}-1}+\frac{n_{2}}{n_{2}-1}\right.}{l} \end{aligned}$
Mean difference of two normal distributions for paired samples, μ_{d}	$\overline{\mathrm{d}} \pm \mathrm{t}_{\alpha / 2} \frac{\mathrm{~S}_{\mathrm{d}}}{\sqrt{\mathrm{n}}} \quad ; \quad \mathrm{df}=\mathrm{n}-1$ where n is no. of pairs

