

UNIVERSITI TEKNOLOGI MARA ANSWER ASSESSMENT 1

COURSE	STATISTICS FOR BUSINESS AND SOCIAL SCIENCES
COURSE CODE	: STA404
DATE OF EXAMINATION	: 25 NOVEMBER 2020
DURATION	: 30 MINUTES

- a) T
- b) F
- c) F
- d) T
- e) T

(5 marks)

QUESTION 2

a)	mean = $252/15 = 16.8$, standard deviation = $\sqrt{38.6} = 6.2129$	
'		

(2 marks)

(2 marks)

c) The shape of the distribution is skewed to the left.

(1 mark)

CONFIDENTIAL

CS/NOV 2020/STA404

QUESTION 3

a)

$$99\% CI = 115.35 \pm Z_{\frac{0.01}{2}}(\frac{20.44}{\sqrt{35}})$$

$$99\% CI = 115.35 \pm (2.58)(\frac{20.44}{\sqrt{35}})$$

$$99\% CI = 115.35 \pm 8.914$$

$$99\% CI = (106.436, 124.264)$$

(3 marks)

 b) We can conclude that the customers not spent more than RM110 because 110 is included in the interval.
 (2 marks)

QUESTION 4

a) **X** = 85.20 - 82.30 = 2.90 **Y** = 9

b) 95% CI = (1.199, 4.601)

c) There is enough evidence to conclude that their resting pulse rate has reduced after five weeks because 0 is not included in the interval

(2 marks)

END OF QUESTIONS

3

(2 marks)

(1 mark)

CONFIDENTIAL

APPENDIX 1 SAMPLE MEASUREMENTS

Mean	$\overline{\mathbf{x}} = \frac{\sum \mathbf{x}}{n}$
Standard deviation	$s = \sqrt{\frac{1}{n-1} \left[\sum x^2 - \frac{\left(\sum x\right)^2}{n} \right]} \text{ or }$ $s = \sqrt{\frac{1}{n-1} \left[\sum (x-\overline{x})^2 \right]}$
Coefficient of Variation	$CV = \frac{s}{\overline{x}} \times 100\%$
Pearson's Measure of Skewness	Coefficient of Skewness = $\frac{3(\text{mean} - \text{median})}{\text{s tan dard deviation}} \text{OR} \frac{\text{mean} - \text{mod e}}{\text{s tan dard deviation}}$

4

CONFIDENTIAL

CONFIDENCE INTERVAL

Parameter and description	A (1 - α) 100% confidence interval
Mean μ , for large samples, σ^2 unknown	$\overline{\mathbf{x}} \pm \mathbf{z}_{\alpha/2} \frac{\mathbf{s}}{\sqrt{\mathbf{n}}}$
Mean μ , for small samples, σ^2 unknown	$\overline{x} \pm t_{\alpha/2} \frac{s}{\sqrt{n}}$; df = n - 1
Difference in means of two normal distributions, $\mu_1 - \mu_2$ $\sigma_1^2 = \sigma_2^2$ and unknown	$\begin{split} (\overline{x}_1 - \overline{x}_2) \pm t_{\alpha/2} s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} & ; df = n_1 + n_2 - 2 \\ s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}} \end{split}$
Difference in means of two normal distributions, $\mu_1 - \mu_2$, $\sigma_1^2 \neq \sigma_2^2$ and unknown	$(\overline{x}_{1} - \overline{x}_{2}) \pm t_{\alpha/2} \sqrt{\frac{s_{1}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}};$ $df = \frac{\frac{\left[\frac{s_{1}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}\right]^{2}}{\frac{\left(\frac{s_{1}^{2}}{n_{1}}\right)^{2}}{n_{1} - 1} + \frac{\left(\frac{s_{2}^{2}}{n_{2}}\right)^{2}}{n_{2} - 1}}$
Mean difference of two normal distributions for paired samples, μ_{d}	$\overline{d} \pm t_{\alpha/2} {s_d \over \sqrt{n}}$; df = n – 1 where n is no. of pairs